
NAVAL POSTGRADUATE SCHOOL
MONTEREY, CALIFORNIA

ELECTE* ,
'JUN 0] 19951 I

m w

THESIS

TESTING AN IMPLEMENTATION'S CONFORMANCE
TO A FORMAL SPECIFICATION:

THE SNR HIGH SPEED TRANSPORT PROTOCOL

by

Robert Baxter Grier, Jr.

March 1995

Thesis Advisor: G.M. Lundy

Approved for public release; distribution is unlimited

19950531 006 ^yji

IT^IC Qp^^**"

REPORT DOCUMENTATION PAGE Form Approved
OMD No. 07040188

Public .«porting burden for Ih» colleetion of information » estimated to average 1 hour per response, including the lim. reV»»,ng instructions »arching existina data source,

collects of mfom«.™ ,„du<*ng suggest.ons for reducmg thrs burden to Washington Headquarter, Service,, Directorate for Information Operation, and Report, 1215 Jefferson
Dav,s H.ghway, Surte 1204, Ari.ng.on, VA 22202^302. and to ,h. Off*, of Management and Budget, Paperwo.k Reduction Project (OTW-OTM). Washington^' 2u5u3

1. AGENCY USE ONLY (Leave Blank) 2. REPORT DATE

March 1995
13. REPORT TYPE AND DATES COVERED

Master's Thesis
4. TITLE AND SUBTITLE

Testing an Implementation's Conformance to a Formal Specification:
The SNR High Speed Transport Protocol

6. AUTHOR(S)

Grier, Robert Baxter, Jr.

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

5. FUNDING NUMBERS

8. PERFORMING ORGANIZATION
REPORT NUMBER

9- SPONSORING/ MONITORING AGENCY NAME(S) AND ADDRESS(ES)
10. SPONSORING/ MONITORING

AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES __^__^___

The views expressed in this thesis are those of the author and do not reflect the official policy or position
of the Department of Defense or the United States Government.

12a. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited. 12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words) ■——————^___^■«•«___

The major problem addressed by this research is testing the actual implementation of a high speed
network.ng transport protocol, SNR, written by two masters degree candidates, Wan and Mezhoud to
determine its adherence to a formal specification described by H. A. Tipici and G M Lundy

The approach taken was to modify the code to provide a program trace which included information
about internal state variables and was designed to follow the specification's finite state machine description
The specification was used in conjunction with Testgen, a program written by C. Basaran, to generate a set
of verification tests. A program was designed and implemented to provide a detailed analysis of the
implementation, based on these two sets of data, to identify any deviations from the specification

state'^^ state and that R4 fails to check for an empty INBUF before finishing. The automated verification process
enabled the detailed inspection of hundreds of lines of trace listings in seconds, providing information about
which transitions were actually taken and error messages when failures to perform required actions occurred
or predicate requirements were not met.

14. SUBJECT TERMS

Transport Protocol, Networking, Software Testing

17. SECURITY CLASSIFICATION
OF REPORT

Unclassified

NSN 7540-01-280-5500

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT

Unclassified

15. NUMBER OF PAGES
80

ifi. PHIcE WBE

20. LIMITATION OF ABSTRACT

UL
Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Sid. 21918

11

Approved for public release; distribution is unlimited

TESTING AN IMPLEMENTATION'S CONFORMANCE

TO A FORMAL SPECIFICATION:

THE SNR HIGH SPEED TRANSPORT PROTOCOL

Robert Baxter Grier, Jr.
Captain, United States Army

B.S., Texas A&M University, 1984

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
March 1995

Author:

Approved by:

Shridhar B. Shukla, Second Reader

Ted Lewis, Chairman,
Department of Computer Science

Acce3ion For

NTiS CRA&I
DTIC TAB
Unannounced
Justification

By

Distribution/

VI

D
a

Availability Codes

Dtst

A-

Avail and/or
Special

1U

IV

ABSTRACT

The major problem addressed by this research is testing the actual implementation of

a high speed networking transport protocol, SNR, written by two masters degree

candidates, Wan and Mezhoud, to determine its adherence to a formal specification

described by H. A. Tipici and G. M. Lundy.

The approach taken was to modify the code to provide a program trace which included

information about internal state variables and was designed to follow the specification's

finite state machine description. The specification was used in conjunction with Testgen, a

program written by C. Basaran, to generate a set of verification tests. A program was

designed and implemented to provide a detailed analysis of the implementation, based on

these two sets of data, to identify any deviations from the specification.

The results of this work found machines T2, Rl and R2 perform the dequeuing of

packets in unspecified states, and that R4 fails to check for an empty INBUF before

finishing. The automated verification process enabled the detailed inspection of hundreds

of lines of trace listings in seconds, providing information about which transitions were

actually taken and error messages when failures to perform required actions occurred or

predicate requirements were not met.

VI

TABLE OF CONTENTS

I. INTRODUCTION 1

A. BACKGROUND 1

B. OBJECTIVE 2

C. SCOPE, LIMITATIONS AND ASSUMPTIONS 2

D. ORGANIZATION OF THESIS 2

II. THE SNR PROTOCOL 5

A. BACKGROUND 5

B. SYSTEMS OF COMMUNICATING MACHINES (SCM) 5

C. THE SNR TRANSPORT PROTOCOL 6

1. Design Philosophy 6

2. Modes of Operation 7

3. Machine Organization and General Overview 7

4. Services Provided 9

D. COMMUNICATION STRUCTURES 9

1. Communication Channels 10

2. Buffers 10

3. Major Variables 12

E. FORMAL SPECIFICATION-MODIFIED FOR TESTING 13

1. Modifications to the Transitions 14

IE. TESTING OF THE IMPLEMENTATION 21

A.TESTGEN 21

1. A Procedure for Generating Test Sequences 21

2. Preliminary Steps 22

3. Test Sequence Generating Procedure 22

4. Refining Steps 23

5. Input and Output 24

B. MACHINE TEST TRACE GENERATION 25

vu

C. THE VERIFICATION PROGRAMS 26

1. TestPack 26

2. SNRTEST 29

D. THE TESTING 30

IV. TEST RESULTS 31

A. BLACK BOX VERSUS WHITE BOX TESTING METHODOLOGIES 31

B. LIMITATIONS 32

C. DATA COLLECTION 32

1. Standard/Error Free Connection Tests 32

2. Connection Interruption Test 33

3. Refused Connection Test 33

4. Lost Packet Test 34

5. Duplicate Packet Test 34

6. Testing Timeout 34

7. Silent Receiver Test 35

D. GENERAL CONCEPTS 35

E. THE TRANSMITTERS 35

1. Machine Tl 3g

2. Machine T2 37

3. Machine T3 3g

4. Machine T4 39

F. RECEIVERS 40

1. Machine Rl 4Q

2. Machine R2 42

3. Machine R3 43

4. Machine R4 44

G. FINAL OBSERVATIONS 45

V. CONCLUSIONS AND TOPICS FOR FUTURE RESEARCH 47

Vlll

A. IMPLEMENTATION CONFORMANCE VERIFICATION 47

1. Testing Methods and Problems 47

B. CONCLUSIONS 48

C. TOPICS FOR FOLLOW ON WORK 49

1. A Formal Approach to Implementing a Formal Specification 49

2. Examining an Implementation Unintrusively 49

APPENDIX. RESULTS ANALYSIS GENERATING PROGRAM 51

A.SNRTEST.A „ 51

B. TESTPACK.A 52

LIST OF REFERENCES „ 63

INITIAL DISTRIBUTION LIST 65

IX

LIST OF FIGURES

Figure 1 : Network, Hosts, Entities and Protocol Processors 7

Figure 2 : Machine Organization 8

Figure 3 : Machine Organization Including the Shared Variables 9

Figure 4 : OUTBUF: Transmitter Buffer 10

Figure 5 : INBUF and RECEIVE: Receiver Buffers 11

Figure 6 : Tl State Diagram and Modified Predicate-Action Table 14

Figure 7 : T2 State Diagram and Modified Predicate-Action Table 15

Figure 8 : T3 State Diagram and Modified Predicate-Action Table 16

Figure 9 : T4 State Diagram and Predicate-Action Table 17

Figure 10 : Rl State Diagram and Modified Predicate-Action Table 17

Figure 11: R2 State Diagram and Modified Predicate-Action Table 18

Figure 12 : R3 State Diagram and Modified Predicate-Action Table 19

Figure 13 : R4 State Diagram and Modified Predicate-Action Table 19

Figure 14 : Testgen Overview 21

Figure 15 : Testgen FSM Input for T3 24

Figure 16 : Testgen PAT Input for T3 25

Figure 17 : Testgen Output for T3 25

Figure 18 : T3 Trace Output Example 26

Figure 19 : Predicate and Action Match 28

Figure 20 : Predicate Match With Action Match Failure 28

Figure 21 : Predicate Match Failure 28

Figure 22 : Final Statistics Output 29

XI

Xll

LIST OF TABLES

Table 1 : Major Transmitter Variables12

Table 2 : Major Receiver Variables 13

Table 3 : Tl Test Results 36

Table 4 : T2 Test Results 37

Table 5 : T3 Test Results 38

Table 6 : T4 Test Results 40

Table 7 : Rl Test Results 41

Table 8 : R2 Test Results 42

Table 9 : R3 Test Results 43

Table 10 : R4 Test Results 44

XUl

I. INTRODUCTION

A. BACKGROUND

Today, computer networking and networking issues and problems are a major area

of interest in the field of computer science. Computers from desktop PCs to workstations

and mainframes are being linked together in order to share resources from printers, to

memory, to processor power. As the processing speed of these networked machines has

increased, so has the requirement for intercommunication. Hardware designed to allow

connectivity between separate machines has grown at an astounding rate with the advent of

fiber optic cable and network standards such as FDDI and fast Ethernet. These new network

standards, capable of data transfer rates greater than 100 million bits per second, have

outstripped existing transport protocols. The problem of developing new transport

protocols to better utilize the vast bandwidths available with these new standards has given

rise to numerous designs from both the commercial and academic worlds.

Protocol designs must first be described in a formal specification. The formal

specification needs to allow for both a verification of the protocol and should be complete

enough to translate directly into an actual implementation.

One such answer to meeting the needs of high speed networks is the SNR transport

protocol. Originally described in [1] and further refined in [10], this protocol is sufficiently

well defined to be implemented. The nature of this work is to take an actual implementation

and walk it against the formal specification to verify compliance.

As with any piece of software, the correctness and viability of these new protocols

must be carefully examined and tested. Testing must be done for the formal specification

and for the implementation as well. A number of formal testing procedures for the

specification of a networking protocol have been developed to include reachability

analysis. Testing an implementation to ensure its conformance to the formal specification

is another necessary requirement. The derivation of a set of finite state machines to

incrementally examine and test the protocol must be done. Once the set of tests are

developed, the process of applying the tests to an actual implementation may be

undertaken. The generation of the test sequences must be carefully examined in order to

preclude spurious results. The actual development of a testing program to examine the

workings of the transport protocol implementation at work is the problem at hand.

B. OBJECTIVE

The objective of this thesis is to report the results of testing an implementation of

the SNR protocol, written by F. Mezhoud [13] and W. J. Wan [12], to ensure its compliance

with the formal specification. The implementations are the thesis work of two Naval

Postgraduate School master's students and is run on an FDDI network consisting of two

Sun Microsystems SPARCstationTM 10 running the SolarisTM 2.3 operating system.

C. SCOPE, LIMITATIONS AND ASSUMPTIONS

The scope of this work limited to designing a test program which will allow the user

to examine the program traces generated by eight different SNR machines and compare it

to a set of test sequences derived from the protocol specification. The goal is to determine

if the implementation conforms to the specification. The SNR implementation code was

augmented so state variable information is written to a file during run time. This program

trace information is then compared with the formal specification in order to determine if

the program is working in accordance with the design specification. This work serves only

to test for compliance with specification. Each machine is tested separately and treated as

a black box, that is, the inner workings of the machines are not examined, only the state of

the global and local variables. This work is not intended to test if the specification contains

errors or to evaluate the protocol's ability to provide service to the user.

D. ORGANIZATION OF THESIS

This thesis is organized into five chapters. This chapter is the introduction and

serves to introduce the reader to the problem of transport protocol implementation

specification compliance testing, the purpose of this work. Chapter H gives an overview of

the SNR protocol along with a review of the Systems of Communicating Machines (SCM)

which serves to model the protocol. Chapter II also contains information about the

modifications made to the specification in order to facilitate the testing process. Chapter

in discusses the underlying concepts behind the test generation process, the method of

producing both test traces from the implementation and test sequences from the

specification, and details concerning the automated verification programs. Chapter IV

discusses the results obtained from the examination of the implementation. Chapter V

contains conclusions which may be derived from the given results and suggests additional

work which remains to be done.

II. THE SNR PROTOCOL

A. BACKGROUND

The SNR transport protocol is an attempt to overcome the difficulties experienced

by the current transport protocols with some unique features which are different than the

features of the other lightweight protocols. It was first introduced in [1], and in [10] a

formal specification was given by using the Systems of Communicating Machines (SCM)

model. The next section defines the protocol model SCM.

B. SYSTEMS OF COMMUNICATING MACHINES (SCM)

A number of models for protocol specification and verification have been defined;

these are discussed in the references [3], [4], [5], [6], [7], and [8]. The model used here is

called systems of communicating machines, and is briefly described in this section. A more

detailed description and discussion can be found in references [9] and [10].

A system of communicating machines is an ordered pair C=(M, V), where

M={mh m2,..., m„}

is a finite set of machines, and

V={v1,v2,...,vk}

is a finite set of shared variables, with two designated subsets R^ and Wt specified

for each machine mt. The subset Ri of V is called the set of read access variables for

machine m-v and the subset Wt the set of write access variables for m-v

Each machine mt z M is defined by a tuple (S/(s0, Lv Nit ii), where

(1) Si is a finite set of states;

(2) s0 E S, is a designated state called the initial state of m{,

(3) L, is a finite set of local variables;

(4) Nt is a finite set of names, each of which is associated with a unique pair (p, a),

where p is a predicate on the variables of L, u i?, and a is an action on the variables of

LlKjRi u Wt. Specifically, an action is a partial function a:L; xRi^Li x Wt from the

values contained in the local variables and read access variables to the values of the local

variables and write access variables.

(5) x,.: SfXNi -» Si is a transition function, which is a partial function from the

states and names of mi to the states of mv

Let x {sh n) = s2 be a transition which is defined on machine m(. Transition x is

enaö/ed if the enabling predicate p, associated with name n, is true. Transition x may be

executed whenever iw£- is in state S] and the predicate p is true (enabled). The execution of

x is an atomic action, in which both the state change and the action a associated with n

occur simultaneously.

The setL,- of local variables specifies a name and a range for each. The range must

be a finite or countable set of values.

A table called a predicate-action table (PAT) lists each transition name and the

predicate and action associated with that transition. This table, together with the FSM

diagrams and the variables make up the formal specification.

C. THE SNR TRANSPORT PROTOCOL

The following abstract communication structure definitions are from [1]. The

majority of the following text is extracted from [10] with some modifications.

1. Design Philosophy

The key idea in the design of the SNR protocol is to provide rapid processing of

packets. This goal is achieved through simplicity, reduction of processing overhead and

utilization of parallel execution of tasks. In order to achieve these goals, the following

design principles are observed:

• Periodic exchange of complete state information and eliminating explicit timers,
• Selective repeat method of retransmission,
• The concept of packet blocking,
• Parallel processing.

Further elaboration of these design principles can be found in [1] and [10].

2. Modes of Operation

The following three modes of operation are specified:

Mode 0 has no error control or flow control. It is suited for virtual circuit networks

and for the cases where quick interaction between the communicating entities is desired and

short packets are used.

Mode 1 has no error control but provides flow control. This mode is suitable for

real time applications such as packetized voice or real-time monitoring of a remote sensor

where error control is not needed and packet sizes are small. Also convenient if the

underlying network is reliable.

Mode 2 has both error control and flow control. This is the most reliable mode and

it is useful for large file transfers in all types of network services.

3. Machine Organization and General Overview

The protocol can be envisioned as connecting two host computers end-to-end

across a high speed network as shown in Figure 1.
Host Host

Entities
H 1

Protocol
Processor

J 1 •1 1

H 1

Figure 1 : Network, Hosts, Entities and Protocol Processors

This protocol requires a full duplex link between two host systems. Each host

system in the network consists of eight finite state machines (FSM), four for executing the

transmitter functions, and four for executing the receiver functions.

The general organization of the machines is shown in Figure 2 (this figure is an

extension of a similar figure in [1]). Each machine in the protocol performs a specific

function in coordination with other machines. The coordination is established by

communicating through shared variables which will be explained later.

Machine Tl is responsible for the transmission of new data packets and

retransmission of old packets. Machine T2 establishes the connection with the receiver and

thereafter processes the incoming receiver control packets and updates related tables and

variables as the blocks are acknowledged. Machine T3 sends transmitter control packets to

the receiver periodically. Machine T4 is the host interface of the transmitter. It inserts the

incoming data stream into the buffer for transmission by machine Tl.

Tl
and retransmit

old blocks)

T4
(Host interface)

,^T2
(Connect;

process incoming
control packets)

T_CHAN

T_CHAN

R CHAN

T3
(Send transmitter

control packets)

Rl
(Receive
data packets)

< '
„R2
(Connect;

process incoming
control packets)

R4
(Host interface)

R3
(Send receiver

control packets)

Figure 2 : Machine Organization

Machine Rl removes the data packets from the transmitter channel and inserts them

into the buffer in order according to their sequence numbers. Machines R2 and R3 are

receiver counterparts of transmitter machines T2 and T3. Machine R2 receives the

connection request messages sent by machine Tl. After the connection establishment, it

receives the transmitter control packets. Machine R3 sends the receiver control packets at

periodic intervals through the receiver channel. Machine R4 is the host interface of the

receiver. It retrieves the data packets from the buffer and passes them to the host.

4. Services Provided

The protocol provides for the following general services:

Multiplexing, demultiplexing,

Connection management,

Sequenced delivery,

Flow control,

Error recovery.

D. COMMUNICATION STRUCTURES

In this section the communication structures are defined for background

information. The information provided it taken directly from [10].

To illustrate discussions in this section the machine organization diagram, Figure 2,

is extended to include communication structures as well as the global shared variables in

the transmitter and the receiver and shown as Figure 3.
OUTBUF .—-^—^_—^_

T CHAN
retrans

i. trans
tail

T4
(Host interface)

Tl
(Send new blocks
and retransmit

old blocks)

Rl
(Receive
data packets)

INBUF
head

,„T2
(Connect;

process incoming
control packets)

T_CHAN

R_CHAN

Transmit

Accent
Fail

T_active

Disconnect

NOU

buffer

T3
(Send transmitter

control packets)

„J*2
(Connect;

R4
process incoming (Host interface)
control packets)

R3
(Send receiver

control packets)

R_active

received
Disconnect

Buffer_avail

LWr

UWr

LUP table RECEIVE
Seq count Ack

Figure 3 : Machine Organization Including the Shared Variables

1 1 1
ARFX

1. Communication Channels

The logical links connecting the two entities are modeled as queues which are

called "communication channels" in the specification of the protocol.

T_CHAN is the channel from the transmitter to the receiver. This is the channel in

which the transmitter sends connection requests, connection confirmation messages, data

packets, transmitter control packets and disconnect messages. As shown in Figure 3, Tl

and T2 write messages into T_CHAN, while Rl and R2 read messages from T_CHAN.

R_CHAN is the channel from the receiver to the transmitter. This channel carries

the connection acknowledgment messages and receiver control packets sent by the receiver

(R2 and R3).

2. Buffers

Figures 4 and 5 show the buffers used in the transmitter and the receiver. It is

assumed that the data stream is already divided into packets by the host.

OUTBUF: This is where machine T4 deposits the data packets it gets from the host

for transmission. Machine Tl extracts the packets from here, adds the header parts and

transmits them to the receiver. A schematic illustration of OUTBUF is shown in Figure 4.

RETRANS
|yi Acknowledged

p;:| Waiting to be
^"^ acknowledged

I I Waiting to be
transmitted

PI Empty

-Retransmission
buffer

Transmission,
buffer

Figure 4 : OUTBUF: Transmitter Buffer

As it can be seen in the figure, this buffer has two parts: Retransmission buffer and

transmission buffer. The retransmission buffer is located before the transmission buffer and

holds the packets that have been transmitted by machine Tl but not acknowledged yet. The

transmission buffer holds the packets which have been buffered by machine T4 and waiting

10

to be transmitted. These buffers are marked by three pointers called RETRANS, TRANS and

TAIL.

The purpose of dividing the OUTBUF into two parts is to avoid the movement of

data packets within the buffer, which is a costly operation. With the buffer scheme

explained here, the data packets which are enqueued at the end of the transmission buffer

remain in their places until they are acknowledged by the receiver.

INBUF: Each logical connection has its own pre-negotiated buffer in the receiver

called INBUF. This temporarily holds the data packets until they are retrieved by the

receiving host. Another function of this buffer is to reorder the data packets that arrive out

of sequence. Received data packets are inserted into buffer locations whose indexes are

calculated from the sequence numbers. Figure 5 depicts the schematic diagram of INBUF.
HEAD

INBUF

m

" Passed to the host

PH Waiting to be
^■^ passed to the host

I I Empty (not received)

RECEIVE

loloioimi HOI niioiilolihlololololololololololol
Figure 5 : INBUF and RECEIVE: Receiver Buffers

RECEIVE: This is an array of bits where each bit maps to a location of INBUF. The

purpose of this bit array is to indicate if any location of INBUF contains a data packet. A

RECEIVE bit set means that there is data in the corresponding INBUF location. This

scheme has three uses: First, it helps detection of duplicate packets whose block sequence

numbers are greater than LWr secondly, it is used in determining whether or not a whole

block has been received for acknowledgment purposes and finally it indicates to machine

R4 whether there is a data packet in the buffer ready to be retrieved.

After machine R4 passes a block of packets to the host, it sets the corresponding

RECEIVE bits to 0. The buffer allocation and deallocation for the packets is done in a very

11

simple way by the protocol and no operating system support is needed, except for the

allocation of a buffer space for INBUF in the memory.

AREC: This is another array of bits, whose size is equal to the number of blocks that

can be stored in INBUF. Each bit in this array corresponds to a block of packets in INBUF

starting from the first location, so that bit 1 of AREC corresponds to the first block of

packets, bit 2 corresponds to the second block of packets and so on. When all the packets

in a block have been received, the AREC bit for this block is set to 1. This array is used to

acknowledge the blocks together with LWr and LOB array.

These structures are used as follows in order to acknowledge the data packets

received correctly: Upon reception of a data packet by the receiver, a check for duplicate

detection is done. The packet is a duplicate if the block number that contains the packet is

less than LWn or if the RECEIVE bit corresponding to the packet sequence number is 1. In

this case, the packet is discarded. Otherwise, it is inserted into the corresponding INBUF

location and the RECEIVE bit for this location is set to 1. If this packet completes the

reception of a whole block of packets, then either LWr is increased until it is equal to the

sequence number of the first incomplete block (if the completed block is LWr), or a bit

corresponding to that block in AREC is set to 1 (if the completed block is different than

LWr). Thereafter, AREC is copied into the LOB array for transmission in a receiver control

packet to acknowledge the successfully received blocks.

3. Major Variables

The major transmitter variables are shown in Table 1 and the major receiver

variables in Table 2.

name accessed Dy machines type or purpose
OUTBUF T1.T4 buffer messages for transmission
retrans.trans.tail Tl (subroutines) pointers to OUTBUF
Transmit T2.T4 boolean
Accept T2.T4 boolean
Fail T2.T4 boolean

Table 1: Major Transmitter Variables

12

name accessed Dy maclunes type or purpose
T_active T1,T3,T4 boolean
sent T1.T3 boolean
Disconnect T2,T3 boolean
scount T2.T3 counter
NOU T1.T2 number of unack'd data blocks
LUP(seq,count,ack) T1.T2 table for transmitted data blocks
mode T1,T2 store current mode
UWt Tl upper window, transmitter
LW, T2 lower window, transmitter
k T2,T3 interval between control packet transmissions
L Tl max window size

Table 1: Major Transmitter Variables

name accessed oy macbines type or purpose
INBUF R1.R4 store incoming data packets
head R1.R4 pointer to INBUF
R_active R1,R2,R3,R4 boolean
Disconnect R3.R4 boolean
Buffer_avail R1JR4 boolean
scount R2.R3 counter
LWr R1.R4 lower window, receiver
UWr R1.R4 upper window, receiver
RECEIVE R1.R4 bit array for packets in INBUF
AREC R1.R4 bit array, blocks in INBUF
mode R1,R4 mode indicator, 0,1 or 2
LOB R1.R4 bit array, for acknowledgments
k R3 interval between control packet transmissions
received R1.R3 boolean

 _=r 1

Table 2: Major Receiver Variables

E. FORMAL SPECIFICATION-MODIFIED FOR TESTING

In this section, a formal specification of the SNR transport protocol will be given

using the SCM model. The FSMs and PATs given are the ones used to define the

specification for the tests. No new states were added to those given in [10] but some

transitions were added. The additional transitions are the result of removing all the or

conditions in the predicates and the conditional statements from the actions. This gives a

set of predicates and actions which may be directly compared with the test run trace data.

Another approach to removing conditional predicates would have been to add

additional states, transitional in nature, exited based on the conditional portions of the

13

original transitions. This approach is less preferable as it increases the complexity of both

the FSM and the PAT. Where n is the number of or conditions in the original specification,

adding states increases the transition number by n versus n-1 for the splitting method.

1. Modifications to the Transitions

I no err ©err_c

Transition
start
finish
retransmit 1

retransmit?

Predicate
T_active=T

_active=F
T_active=TA

mode= 2 A Expired(LUP) /=0
A retrans_count <= block size

transmit_
blkl

i'_active=TA

mode= 2 A Expired(LUP) /=0
A retrans_count > block size

Action
null
rar

transmit_
blk2

transmit
blk3

'l_active=T A

not (Empty(OUTBUF)) A

trans_count <= blk_size A

mode=0

■BIT
completed

no (low
flow_chk 1
How chk2
no en-
err chk

T_active=T A

not (Empty(OUTBUF)) A

trans_count <= blk_size A

NOU < L A

buffer - NOU>0 A

mode=l

_active=T A

not (Empty(OUTBUF)) A

trans_count <= blk_size A

NOU < L A

buffer - NOU>0 A

Expired(LUP)=0

lJackeLseq:=(Expired(LUP)-l)iblock_size+"
retrans_count;

PackeLdata:=OUTBUF(Packetseq mod
OUTBUF'length);

Enqueue(Packet,T_CHAN);
sent := T;
inc (retrans_count);
'ackeLseq :=(fcxpired(LU P)-1)*block_size+

retrans_count;
PackeLdata:=OUTBUF(Packetseq mod

OUTBUF'length);
Enqueue(Packet,T_CHAN);
sent := T;
retrans_count:=l;
LUP((Expired(LUP)-l) mod L+l).count :=
initial value;
retrans_count ;= 1; ~ ~~
Packet.seq:=UWt * bIock_size + trans_count;
Dequeue(PackeLdata,OUTBUF);
Enqueue(Packet,T_CHAN);
sent:=T;
inc (trans_count);

trans_count > blk_size

mode = 0
mode = 1

retrans_count := 1; "
Packet.seq:=UW, * block_size + trans_count;
Dequeue(PackeLdata,OUTBUF);
Enqueue(Packet,T_CHAN);
sent:=T;
inc (trans_count);
retrans_count := 1;
Packet,seq:=UW, * block_size + trans_count;

Dequeue(Packet.data,OUTBUF);
Enqueue(Packet.T_CHAN);
sent:=T;
inc (trans_count);
trans_count := 1;
inc (UW,);

"HuH

mode = 2
mode = 1
mode

inc (NOU);
inc (NOU);
rar
Insert (UW..LUf>);

Figure 6 : Tl State Diagram and Modified Predicate-Action Table

14

Machine Tl is responsible for transmission of new data packets and retransmission

of unacknowledged packets whenever required. Figure 6 shows the state diagram and the

modified predicate-action table.

The retransmit transition was split into two, the difference being in what was

previously a conditional action based on the comparison of retrans count and block size.

The transmit block transition was split into three based on the conditional portion

of the original predicate conditions: mode=0, or mode=l and buffer - NOU > 0, or

Expired(LUP) = 0 and buffer - NOU > 0.

The flow check transition was split to reflect mode 1 or mode 2.
Predicate Transition

request
accept

unaccept

accept

no err

unaccept

:lock
ok
timeout
retry
quit
finish 1

hnishZ

finish3

ibort

no flow

discardl/2
lupdate

\flow_chkl/2 ©

discard 1
discard2

Transmit=T A Accept^^Fail^F
k_t'HAN(tl

ront) = 6,
onn_/icAA

Acceptable (R_CHAN(front))

R_CHAN(front) = Conn AckK

not (Acceptable (R_CHÄN(front)))
Empty (KCHAN)A clock tick

Action

delay < reset
delay = reset
attempts < max_attempts
attempts = max_attempts
transmit = F Empty (OUTBUF) A

Disconnect = F A mode = 1
Transmit = F A Empty (OUTBUF)

A

Disconnect = F A mode = 0
Transmit = F A Empty (OUTBUF) A

Disconnect = F A

mode = 2 A Empty (LUP)
Jisconnect:

not (Empty (K_LHAN))A Disconnect=F

update
no flow
flow chkl

flow chJcZ

no_err
~cnF

K_CHAN(front)=C'o/in_AcF
K_CHAN(front).seq <= high"
K_CHAN(front).seq > higF~

Enqueue (Connjieq, T_CHAN);
l_active := T;
Enqueue (ConnConf, T_CHAN);
Dequeue (R.CHAN);
Accept :=F;
Dequeue (R_CHAN);
inc (delay);
null
mc (attempts); delay:=0;
Enqueue (Connjieq, T_CHANT

T_active:=F;
Enqueue (Disc. T.CHAN)
T_active:=F;
Enqueue (Disc, T.CHAN);
T_active:=F;
Enqueue (Disc, T_CHAN)

T_active:=r-; Transmit:=F;
null
Dequeue(R_CHAN);

mode = 0
mode= 1

mode = 2

mode = 1
mode = 2

Uequeue(K_CHAN);
scount:=0;high:=K_CHAN(tront).se'qT
Dequeue(R_CHAN);
Balance(Rj^AN(irom).Lol},HÖLD,

R_CHAN(front).LWr.LW,. NOU);
HOLD := R_CHAN(front).LOB;
LW, := R_CHAN(front).LWr;
buffer := R_CHAN(front).buffer_avail.
Update outbuf (OUTBUF. LW,);
UaUnce(K_CHAN(iromi.LoB.H0LD,

R_CHAN(front).LWrXW„ NOU);
HOLD := R_CHAN(front).LOB;
LW, := R_CHAN(front).LWr;
buffer.- R_CHAN(front).buffer_avail.
Update outbuf (OUTBUF. LW,);
Dequeue (R_CHAN);
üPdate_LUP (LUP. HOLD, LW,

R_CHAN(front).k);
Dequeue (R_CHAN);

Figure 7 : T2 State Diagram and Modified Predicate-Action Table

15

Machine T2 has two responsibilities: (/) connection establishment and termination,

(z'O reception and processing of receiver control packets. The state diagram and the

modified predicate action table are presented in Figure 7.

The finish transition was split into three based on the following: mode is 0, or mode

is 1, or mode is 2 and Empty(LUP).

Discard was split based on R_CHAN(front).seq <= high or R_CHAN(front) =

Conn_Ack.

No flow was split for mode is 1 or mode is 2.

Machine T3 has two main responsibilities in the protocol: periodic transmission of

transmitter control packets and initialization of abnormal connection termination if no

receiver control packets are received for a predetermined amount of time. The state

diagram and the modified predicate action table are presented in Figure 8.

Transition Predicate Action
start l_active=l null
clock clockjick" l_active = T inc (scount)
no_data sent=h inc (count)
delay count < k A scount < Lim null
timeoutl scount = Lim Enqueue (7_jtote,T_(JrlAN);

k:=min(2*k,klim)
timeout2 count = k Enqueue (7\itote.T_C]:HAN);

k:=min(2*k,khm)
data sent = 1 Enqueue (V stale, 1 CHAN1);

k:=l
no_disc scount < Lun sent:= h; count:= 0
disc scount = Lira Disconnects 1
coniirm I_active = H null
lirush 1 l_active = 1- null

Figure 8 : T3 State Diagram and Modified Predicate-Action Table

The original PAT listed the predicate conditions for a timeout as count = k and

scount = LIM, but the correct condition for a timeout should be count = k or scount = LIM.

Timeout was split into two based on this or condition.

Machine T4 is the interface to the host transmitter and performs the necessary

communication between the transmitting host and the other machines. The state diagram

and the predicate action table are depicted in Figure 9.

16

Transition Predicate Action
signal transmission signal from the host Transmit := T; Accept := T
fail Fail = T Transmit := F;

notify host of failure to connect;
unaccept Accept = F notify host of unacceptable connection
start T_active = T null
write not (Full (OUTBUF))A not(eot)A

T_active=T
Enqueue (data stream from the host,

OUTBUF)
finish eot A T_active = T Transmit := F
confirm T_active = F notify host of completion
disc T_active = F notify host of disconnect

Figure 9 : T4 State Diagram and Predicate-Action Table

Upon receiving a transmission signal from the host, T4 initiates the execution of the

protocol. As long as the connection is active, T4 writes the data into the buffer and Tl

transmits them. When the end of transmission signal is received from the host, T4 initiates

the connection termination and also gives necessary messages to the host informing it about

the state of the connection.

Machine Rl removes the data packets from T_CHAN and inserts them into their

buffer2a/b

Transition

start
finish
receive
no TuF

bufferla

Predicate"
KacUv^^T"""^^^-

K_active = F A Empty (INBUF)
T_CHAN (front) = DATA

buffed b

buffer2a

buiier2b

mode = 0

mode = 1 A duplicate = F

mode = 1 A duplicate = 1

mode = 2 A duplicate = F

Action
Tsr
null
null-

mode = 2 n duplicate = T

Fass l_CHANl (front) to the host;
Dequeue (T_CHAN)
Order_insert(T_CHAN(from). INBUF,

RECEIVE, LWP duplicate);
received := T;
Process_packet (T_CHAN(front).seq. RECEIVE.

AREC.Buffer_avaü,LWpUWnLOB);
Dequeue (T_CHAN);
Order_insert(T_C"HAN(fronO, INBUF,

RECEIVE, LWP duplicate);
Dequeue (T_CHAN);
Order_lnsert(T_C'HAN(front), INBUF,

RECEIVE, LWP duplicate);
received := T;
Process_packet (T_CHAN(front).seq. RECEIVE.

AREC.Buffer_avauXWpUWr10B);
Dequeue (T_CHAN);
Order_insert('l_(L'H AN (front). INBUF.

RECEIVE. LWP duplicate);
Dequeue (T_CHAN);

Figure 10 : Rl State Diagram and Modified Predicate-Action Table

allocated locations in the buffer INBUF, discards duplicate packets, and updates the

structures used for flow control and error recovery management (RECEIVE, AREC and

17

LOB). In mode 0, Rl passes the packets to the host directly without buffering and without

performing any kind of error or flow control operation. The state diagram and the modified

predicate action table of machine Rl are given in Figure lO.The original buffer transition

had a conditional action based on whether or not the packet was a duplicate. It has been

split into four, first by mode and then by the value of the duplicate flag.

Machine R2 is the receiver counterpart of transmitter machine T2. The state

diagram and the predicate action table is depicted in Figure 11.

timeout/
Predicate

T.CHAN (front) = Conn_Req

clockJkk A Empty (T_CHAN)

Action

delay < reset
delay = reset
TJJHAN (front) = Conn_conf
l_CHAN(iront) = T_.5tate
l_CHAN(lront) = .£>a2a

Disconnect = T
i'_CtiAH(!ronl)=b!sc
J_CHAN(front) = T_Jta/^
T_CHAN(front).seq > high

rj-'HAN(front) = Conn_conT
TJJHAN(front) = ConnJ7q~
T_(JHAN(ironO = y>tf<rA

T_CHAN(front).seq <= high
_CHAN(tront) = Conn req

Evaluate (Conn_req);
Dequeue (T_CHAN);
Enqueue (Connack, R_CHAN);
inc (delay)
Enqueue (Connack, R_CHAN);

■a-

R_active:= T; Uequeue(T_CHAN); '
K_active:= 'I;
K_active:= 'I;
K_active := F;
K active := F;
scount := 0,
high := T_CHAN(front).seq;
Dequeue (T_CHAN);
Dequeue (TJJHAN);

Dequeue (i_CHAN);

Dequeue T.CHAN);
Enqueue (Connack, R_CHAN) |

Figure 11 : R2 State Diagram and Modified Predicate-Action Table

First, it establishes the connection with the transmitter and thereafter receives and

processes the transmitter control packets.

The start transition was split based on the three original or conditions:

T_CHAN(front) = Conn_conf, or T_CHAN(front) = TJtate, or T_CHAN(front) =Data.

The finish transition split into two based on either T_CHAN(front) = Disc or

Disconnect flag is set to true.

The discard transition was split into three: T_CHAN(front) = Conn_conf, or

T_CHAN(front) = Conn_req, or TCHAN(front) = TJtate and T_CHAN(front).^ <=

high.

18

Machine R3 has exactly the same structure and function as transmitter machine T3

as shown in Figure 12. The R3 PAT contained the same error as the T3, the and rather than

or condition for determining timeout. Fixing this required splitting the timeout transition

into two: count = k and scount = LIM.

Transition Predicate Action
start K_acti ve= 1 null
clock clock_tick A K_active=T mc(scount)
no_data received=F inc(count)
delay count<k A scount<Lim null
timeoutl count=k enqueue(R_state Ji_CHAN);

k:=min(2*k,klim)
timeouß scount=Lim enqueue(R_state,R_CHAN);

k:=min(2*k, klim)
data received=T enqueue(R_state, R_CHAN);

k:=l
no_disc scount<Lim received:=F; count:=0
disc scount=Lim Disconnect:=T
confirm R_active=F null
finish R_active=F null

Figure 12 : R3 State Diagram and Modified Predicate-Action Table

Machine R4 provides the interface to the receiving host by passing the data in

INBUF to the host and notifying the host of any errors which may occur during the

reception of the data packets. The state diagram and the predicate-action table of machine

R4 is depicted in Figure 13.The accept transition was split to reflect mode 1 or mode 2.

retrieve

Transition
start
finish

disc
accept 1

ept2

wait
retrieve

err chk

Predicate
R^active^T^^^^^^^^™^^-

K_active = F A Empty (INBUF)A

Disconnect = F
Disconnect = 1
Disconnect = F A

not (Empty(INBUF)) Amode=l A

signal from host
Disconnect = F A

not (EmptyflNBUF)) A mode=2 A

signal from host
mode = 1
Wait (INBUF. Rt-CFJVI-) = T
VVait (INBUF, RLt'i-IVr^I-'

mode = 2

Action
null
TOT"

notify host of disconnect
"ssa

TOT"

innr
null

Ketrieve_modei (INBUKRECEIVE,
 ARECbuffe^avaüXWpUWpLQB):
Ketreive_mode2 (INBUFJ^ECEIVE. butfer_avaü);

Figure 13 : R4 State Diagram and Modified Predicate-Action Table

19

20

III. TESTING OF THE IMPLEMENTATION

A. TESTGEN

Testgen was written by C. Basaran and is detailed in [11].

Testgen is a program which takes as input the formal specification of a protocol

using the formal model systems of communicating machines, and outputs a sequence of

tests for an implementation of a given protocol, see Figure 14.

FSM (Text File)

Predicate-Action Table >~
(Text File) ^

Generated Test Sequence
(Text File)

Figure 14 : Testgen Overview

1. A Procedure for Generating Test Sequences

In this section a procedure and its automation are described for generating a

sequence of tests for a protocol specified as a SCM model. The input is the formal protocol

specification (FSM and predicate-action table) specified as a system of communicating

machines (SCM). This is a formal model, or formal description technique, defined in [14].

The output is a sequence of tests and an I/O diagram in a tabular format. The generated

sequence is intended to be applied to an "inplementation under test" or IUT.

Before generating the sequence of tests and the I/O diagram for each test in the

sequence, shared and local variables must be identified. The test inputs (the shared and

local variables that can be set in a controlled way) and the outputs (the shared and local

variables can be observed for test purposes) should be identified. These inputs and outputs

form the I/O for the test steps.

The format for each single test is

SI il, h> - »in > °h °2> - > °m SE

21

S; is the state of machine when the test begins. The z7 i2,... ,in are the values of the

input variables at the start of test execution. The oh o2,..., om are the values of the output

variables after test execution. SE is the state of the machine when the test is complete. The

input and the output variables are taken from the shared and local variables of the machine.

The determination of these variables is explained in the following section.

The testing procedure explained below is written in three parts:

• Preliminary steps,

• Test sequence generating procedure, and

• Refining steps.

2. Preliminary Steps

1. From the machine specification FSM diagram, mark each transition
whose name appears on more than one transition. Each such instance for
a given name is given a separate distinguishing label.
2. From the predicate-action table, note the number of clauses in each
enabling predicate. Mark each clause. An enabling predicate may consist
of several clauses, any one of which might be true, allowing the
transition to execute. Marking each clause insures that each one is tested
individually.
3. For each shared variable x, determine if A: is an input variable, an
output variable, or both. For each x which is both, split x into two
variables, *,- and x0 for testing purposes.

4. For each local variable /, determine if / is used as an interface to the
higher layer user of this protocol. If so mark / as input, output or both.
Each such local variable is specifically designated, and is an input
variable if it appears in an enabling predicate, and an output variable if it
appears in an Action part of predicate-action table. If / is both input and
output, split it into two variables /,• and l0 for test purposes.

3. Test Sequence Generating Procedure

Initially the test sequence is empty.

1. state <r- initial state.
2. Let t = (p,a) be an untested transition from state.
(a) Determine the values of the input variables which make exactly one
of the untested clauses of p true. Check to see if these values allow any
other transition from this state to be executed. If there is one, set
additional input variables to values that insure only the transition under
test is enabled. Fill these in, and mark others "DC" for "don't care."
(b) Determine and mark the expected values for the output variables; also
record the expected values assumed by the local variables.
(c) Set Si to state; determine the next state and set SE to it

22

(d) Determine if SE is transient; if not mark it as a "stop state" and skip
to (3). The state is transient if one of its enabling predicates is true
immediately upon reaching the state. This means that it can pass on to
another state immediately, without waiting for further input.
(e) Attempt to make SE into a stop state by setting "DC" values. That is,
make the DC values such that, upon reaching state % none of the
enabling predicates are true. If successful, go to (3).
(f) If SE is a transient state and more than one transition leaving SE is
enabled, choose one and set inputs not yet specified (if any exist), so that
only one transition leaving SE is enabled; set t = (p,a) to this transition.
3. Output this test Sj ilf i2 i„ I oh o2,... ,omSEzs the next test in the
test sequence.
4. Mark the clause just tested. If all clauses in transition t are now tested,
mark t as tested. If all transitions are now marked as tested, exit to
"refining steps." Otherwise, continue to step (5).
5. Set state to SE. If state is a stop state go to (2), otherwise go to step2(b).

Step 2(a) assumes that it is possible to set the input variables to values that make

exactly one of the clauses true. If the protocol is well designed this assumption will

generally be true. However, there is always a possibility this is not the case; if so, the test

designer must choose the values so that the clauses will be tested as thoroughly as possible,

perhaps in combination with other clauses. If a clause cannot be tested individually, the

question of its necessity to the specification should be considered.

Step 5 sets the starting state of the next test in the sequence to the ending state of

the current test. This makes the ordering of the tests follow the order of their occurrence in

the actual protocol execution.

4. Refining Steps

1. Construct the I/O state diagram from the test sequence.
2. Determine if the sequence are unique, so that from each state, we have
a unique input output (UIO) sequence to confirm. If not attempt to extend
the sequence so that we have a unique UIO sequence from each state.
3. Check for any converging transitions. Mark these, as potential
problems for testing.

The I/O diagram can be constructed from the test sequence and is a tool to help the

test designer insure completeness. This finite state machine is often used as the starting

point in test generation in the literature.

23

A UIO sequence has been defined as a sequence of inputs such that, if the input

sequence is applied to the FSM when FSM is in state i, the resulting output sequence could

not have been produced by the FSM when the FSM is in any other state. If the sequence of

tests applied to a machine implementation in a state i is a UIO sequence, and the output is

expected, then we have a stronger argument that the machine was, in fact, in state i.

This method is used by Testgen to produce the tests applied to the implementatin in

this reasearch.

5. Input and Output

The protocol is specified formally as a finite state machine with local and shared

variables. The FSM input text file lists the start state, the end state, the number of the

transition, and the transition name. The FSM description file for T3, one of the transmitter

machines of the tested implementation, is shown in Figure 15.

0

Oil start
12 2 clock
2 3 3 no_data
3 14 delay
3 4 5 timeout1
3 4 6 timeout2
2 4 7 data
4 18 no_disc
4 5 9 disc
5 0 10 confirm
1 0 11 finish

Figure 15 : Testgen FSM Input for T3

The PAT input text file lists each transition by name, followed by a list of the

predicates, followed by a list of the actions. The PAT description file for T3 is shown in

Figure 16.

The test program finds all paths which may be taken through the FSM and generates

a sequence of tests to check all these paths. The text output of Testgen lists all of the

transitions by name and gives the expected values. For predicates, a DC indicates a 'do not

24

care.' For actions, a '--' indicates a 'do not care.' A example of the text output file for T3

is shown in Figure 17.

start T active = T no I
clock clock = T and T active = T scount := inc 1
no_data sent = F count := inc 1
delay count = LTk and scount = LTLim no 1
timeoutl scount = Lim enqueue := T ; k := min 1
timeout2 count = k enqueue := T ; k := min 1
data sent = T enqueue : = T ; k : = 1 I
no_disc scount = LTLim sent := F ; count := 0 1
disc scount = Lim sent := F ; discon := T 1
confirm T active = F no 1
finish T_active = F no 1

Figure 16 : Testgen PAT Input for T3

Trans I I input variables

I SiIT_activeI clock I count(i) Iscount(i)(sent(i)

start
finish
clock
no_data
delay
data
disc
confirm
no_disc
timeout 1
t imeout2

IT
IP
IT
IDC
IDC
IDC
IDC
IF
IDC
IDC
IDC

IDC
IDC
IT
IDC
IDC
IDC
IDC
IDC
IDC
IDC
IDC

IDC
IDC
IDC
IDC
I LTk
IDC
IDC
IDC
IDC
IDC
Ik

DC
DC
DC
DC
LTLim
DC
Lim
DC
LTLim
Lim
DC

IDC
IDC
IDC
IF
IDC
IT
IDC
IDC
IDC
IDC
IDC

output variables

count(o)IdisconI enqueue Ik Iscount(o) I sent(o)I Sei

inc I-- I-- I--

I-- IT II
IT I-- I —

0 I-- I-- I--
I-- IT Imin
I - - IT I mi n

1 -- 11
1 — 01
l~ 21
l~ 31
1 -- 11
1 -- 41
IF 51
I-- 01
IF 11
1 -- 41
1 -- 41

Figure 17 : Testgen Output for T3

B. MACHINE TEST TRACE GENERATION

Each of the eight machines was modified to open an output file and write out the

values of select local and shared state variables at each point where a state transition

occurred.

First, the code had to be carefully scrutinized to determine exactly where each state

transition occurs. At the point immediately before leaving the current state, a call to the

testdump function was made. The testdump function takes as input parameters the value of

the current state and the value of the next state to be entered. This information along with

the values of the key local and shared state variables is written to the trace output file.

25

The format of the output trace file matches that of the Testgen output file to allow

for an inspection later. An example of the output generated for T3 is shown in Figure 18.

Si IT_Active|clocklcount(i) Iscount(i)I sent I
0
1
2
3
4
1
2
3
1
2
4
1
2
4
1

T
T
T
T
T
T
T
T
T
T
T
F
F
F
F

T
T
T
T
T
T
T
T
T
T
T
T
T
T
F

I LTk
! LTk
I LTk
I k
I LTk
I LTk
I LTk
I LTk
I LTk
I k
I k
I LTk
I LTk
I LTk
I LTk

LTLim
LTLim
LTLim
LTLim
LTLim
LTLim
LTLim
LTLim
LTLim
LTLim
LTLim
LTLim
LTLim
LTLim
LTLim

F
F
F
F
F
F
F
F
T
T
F
T
T
F
F

count(o)IDisconlenqueuel k lscount(o;
0
0

inc

0 I
0 I

inc I
— I
— I

0 I
0 I
0 I
0 I
0 I

F
F
F
F
F
F
F
F
F
F
F
F
F
F
F

F
F
F
T
F
F
F
F
F
T
F
F
T
F
F

II
II
II

min I
— I

II
II
II
II
II
II

0
inc

sent(o!
F
F
F
F
F
F
F
F
T
T
F
T
T
F
F

I Se
I 1
I 2
I 3
I 4
I 1
I 2
I 3
I 1
I 2
I 4
I 1
I 2
I 4
I 1
I 0

Figure 18 : T3 Trace Output Example

C. THE VERIFICATION PROGRAMS

Two programs were written to perform the verification process. TestPack is an Ada

package which performs comparisons between the specification and the implementation.

SNRTest is an Ada program which calls TestPack and allows the user to perform up to eight

different verifications with one run.

1. TestPack

Many of the trace files consisted of greater than 100 lines of output, and for some

machines, such as T2, the number of predicates and actions was greater than 30. In order

to check the trace files against the requirements generated by Testgen, a program called

Testpack was written. The source code for Testpack can be found in the appendix.

TestPack receives a record called filejiamejecord which contains the name of the

files to test. The filejiamejecord is processed to resolve the actual names and directory

locations of the files to be acted upon.

TestPack starts by opening the Testgen file and parsing it. It skips everything until

it locates a line starting with a '-' which indicates the next line will contain the predicate

and action labels. The labels are read in and saved in an array called names. A counter is

used to keep track of how may predicates and actions there are for this particular machine.

26

The program then skips down to where the requirements data is located. A

temporary variable of type Testgen record is used to store the Testgen output. A Testgen

record consists of the start state, the end state, the transition name, an array of strings called

values which holds the expected predicates and actions, and times Jaken: a counter used to

generate final statistics.

Once all the data for a given line has been read, the program attempts to insert the

data into the array of Testgen records called testjstates. The transition name is checked

against all those already saved in test_states, and if it has not been inserted yet, it is added

to the list. This process continues until the Testgen output file is exhausted.

The next step in the process it to begin reading in the trace file. The program is

designed to allow the user to input the source directory path as numerous directories were

needed to hold the results of the different tests. The path is added to the file name and the

file is opened for reading. At the same time an output file is opened in the same subdirectory

to receive the results of the comparisons.

The program skips down to the first line of data and begins reading it in, first the

start state, then the end state. The predicate and action values are stored in an array of

strings called temp.

The program loops while attempting to match both the start and end state values of

a saved testgen records in test_states. When both are matched, the test_state array index

number is saved in an integer array called a_states_match, then the function

Matchpredicates is called. Match predicates compares the values of the predicates,

checking only those not listed as 'do not care' and returns a boolean indicating the result.

A predicate match success leads to the calling of the Match_actions function.

Match_actions attempts to match all those actions not listed as 'do not care' and returns a

boolean indicating the result.

27

A successful return from Match_actions causes the function Report jnatch to be

called which writes the start and end state data followed by the transition name to the output

file, see Figure 19.

THE MODE IS 0

match S L: 0 Se 1 Transition: start
match S 1 : 1 Se 2 Transition: clock
match S L: 2 Se 3 Transition: no data
match S : 3 Se 4 Transition: timeout2
match S : 4 Se 1 Transition: no disc
match SJ : 1 Se 2 Transition: clock
match S] : 2 Se 3 Transition: no data
match Si : 3 Se 1 Transition: delay

Figure 19 : Predicate and Action Match

Failing Match_actions causes the Report_error function to be called which

indicates which action failed to match and then echoes out both the test data line and the

Testgen data which had matching predicates. This information tells the user exactly where

and how the implementation deviated from the specification, see Figure 20.

ERROR-Transition -> clock ACTION -> scount(o) failed to match. Found: — Expected- inc
T_act we clock, count ,i, I scour* «i, I sent(i, ,count,o, Idisconlenqueue ,k ,scount,o) "sentto,
„ IT ILTk ILTLim IT |— |F IF |-— |-— |T

IT IDC 'DC ™ I" I- I- I- line ,'-- !

Figure 20 : Predicate Match With Action Match Failure

If all the test states have been examined without a match, Report_error is called

which outputs the trace data and a message indicating a failure to match any of the existing

transitions, see Figure 21.

ERROR--Predicate failed to match transition from Si: 1 to Se■ 2

T_active !"l0Ck!^nt(i) '™t(i) I s«>t (i), count (o) I di scon I enqueue Ik I scount ,o) I sent (o) |

Should have matched: '^ '* ' ° 'F IF IJ ^
T IT IDC IDC IDC i- ,- ,.. ... |inc ,..

Figure 21 : Predicate Match Failure

Testpack continues reading in trace information until the data is exhausted. The

final step in the automated analysis to write out the statistics concerning each transition.

Every successful match caused the timesjaken counter in the Testgen record to be

incremented. The labels for the predicates and actions are written followed by the data in

28

each of the Testgen records. The taken information allows the user to identify transitions

which have not been tested, see Figure 22.

Taken Si Se Name T_active1 clock 1 count(L) 1 scount (:)1 sent(i) count(o) disconlenqueue Ik scount(o) sent(o) 1 0 1 start T IDC IDC IDC IDC _- __ 1 — 1 — __
1 1 0 finish F IDC IDC IDC IDC __ I-- I--
2 1 2 clock T IT IDC IDC IDC __ __ 1 — inc
2 2 3 no_data DC IDC IDC IDC IF inc __ 1 — 1 —
1 3 1 delay DC IDC ILTk ILTLim IDC __ I'- __
2 2 4 data DC IDC IDC IDC IT __ __ IT ll
0 4 5 disc DC IDC IDC ILim IDC __ T 1 — 1 — F
0 5 0 confirm P IDC IDC IDC IDC __ __ 1 —
3 4 1 no_di sc DC IDC IDC 1LTLim IDC -0- __ 1 — 1 — F
0 3 4 timeoutl DC IDC IDC ILim IDC __ IT Imin
1 3 4 timeout2 DC IDC Ik IDC IDC — — IT Imin -- --

Figure 22 : Final Statistics Output

2. SNRTEST

SNRTest was written to facilitate the verification process. The program, the source

code for which is in the appendix, allows the user to input the names of up to eight machines

as well as the path to the subdirectory where the data is stored. All test trace output files

have a name of the form machine.out such as tl.out. The Testgen output files have names

of the form machineres.txt, such as tlres.txt, and reside in the directory from which

SNRTest is invoked.

The user is first prompted to enter the name of the machines to be tested separated

by single spaces. This data is parsed and saved in a record structure called a

filejiamejecord. The file_name_record already contains the names of the files minus the

machine name prefix which is prepended. A count of how many machines will be tested is

kept as the program parses the input string.

The user is then asked to input the path to the data. This information is put into each

of the file _name_re cords.

Finally, SNRTest loops the number of times corresponding to the count of the

machines to be tested, passing a single file_name_record to TestPack for processing.

29

D. THE TESTING

The modified protocol implementation was used to send files from one machine to

another. The resulting trace files, along with the Testgen output files, were then processed

using the SNRtest. The results of these examinations are contained in the next chapter.

30

IV. TEST RESULTS

The preceding chapter presented the methods used to generate the test trace and the

specification data discussed about the program used to compare the two. This chapter

contains information about what was done to generate the test data, comments about the

performance of the implementation as experienced during the test data generation,

comments about the general approach taken to implement the tests, and the findings based

on the analysis performed on the collected data.

A. BLACK BOX VERSUS WHITE BOX TESTING METHODOLOGIES

The ideal approach to performing a verification test such as this would be as a

'black box,' that is, to test the implementation from a purely outside perspective without

regard to the inner workings. This method is preferable as it focuses strictly on the input

and output (predicates and actions) of the machine under test and does not require the tester

to know about, or necessarily understand, the inner workings of the test subject. The tester

need only provide input to the machine, observe the resultant behavior and compare it to

what is specified to occur.

The testing approach taken here was more a 'white box' method. Because additions

to the tested code had to be made, the tester was required to become intimately familiar with

the implementation in order to correctly position data collection instructions. No less than

six errors were made in the initial modifications which, until identified, made it appear the

implementation was at fault.

The most common error occurred in machines which had transitions which had as

an action, the changing of a value used to determine the predicate condition. Each output

function was called at the end of a transition, just prior to entering the next state. In reading

the ending values of the modified state variables, it appeared, in some cases, that the

predicate conditions had failed. This problem was overcome by saving all the 'old' values

in another variable, local to the test output function, just prior to returning to the main

31

program. A better approach would have been to make two calls to the output file, one

immediately as a state is entered and a second just prior to exiting the state.

B. LIMITATIONS

The test procedure followed here can reasonably assure the tester that all tested

transitions which worked will continue to work as demonstrated. It cannot, however, be

guaranteed that every machine will always terminate, that is, return to the starting state.

This particular set of machines, because of the concurrent nature of their execution,

presents a special set of potential problems. Unless the hardware used to run the different

machines is able to support a dedicated processor for each one, the operating system will

need to make scheduling decisions. The nondeterministic nature of the operating system's

scheduling algorithm may cause the behavior of the machines to vary for no apparent

reason.

During the conduct of the tests there were a couple of instances where the receiver

was started and allowed to stabilize, but when the transmitter was started it was not able to

locate the receiver. The only conclusion which could be made from this occurrence was that

the receiver machines must have been scheduled in such a way as to have created a

deadlock type condition. Further analysis of the interprocess communications should be

undertaken to attempt to locate the cause of this rare situation.

C. DATA COLLECTION

1. Standard/Error Free Connection Tests

The initial step was to test the receivers and transmitters during the transmission of

a file on an 'error free' connection. For the majority of tests a small file, consisting of 16

lines of ascii text, was used since it was large enough to require multiple blocks be used for

its transmission but not so large that thousands of lines of output were generated by the

various machines. The goal was to test each transition at least once, theorizing by induction,

if it works once it will work correctly any number of subsequent times.

32

For each of the three modes the receiver was started and then the transmitter was

started and ran until completion of the file transmission. The receiver was then halted to

cause the output files to be closed. The data generated for all eight machines was then

moved to a separate subdirectory, corresponding to the mode tested, for later analysis.

An analysis of the data collected for the error free connections revealed numerous

transitions which were not taken. The untested transitions, for the most part, represented

those designed to handle unexpected or lost packets and connection failures. Additional

tests were called for to test these transitions.

2. Connection Interruption Test

A larger file, consisting of 1000+ lines of ascii text, was used to test how the

machines would react if the connection was interrupted. The transmission time of the file

was significantly long to allow for a manual disruption of the connection.

After starting the receiver, the transmitter was started. After the connection phase

was completed and transmission of the file begun, the receiver was prematurely halted. The

receiver was designed to allow the user to gracefully end its run by typing in the word 'ok.'

This technique caused the transmitter machines to exercise additional transitions not tested

during the first phase of tests. An interruption of transmission was done for connections in

all three modes.

3. Refused Connection Test

The transmitter and receiver must agree on the terms of the connection before it is

made. In order to cause a connection failure due to a disagreement on the connection set up

parameters, machine R2 was modified to return a different block size in its connection

acknowledgment to T2 than it received in its connection request from T2. Machine T2 then

found the connection to be unacceptable and exercised the unaccept transition and halted.

The T4 machine also exercised the unaccept transition here.

33

4. Lost Packet Test

The Tl machine is responsible for sending the data packets. Within state 1, Tl takes

packets from the out buffer and sends them to Rl. To simulate the loss of a packet, Tl was

modified, for purposes of this test only, to skip a packet during the connection and send the

next one in the buffer instead.

This condition caused the receiver, in mode 2, to notify the transmitter, via the R3

Rjtate packet, of the missing data packet. The transmitter then performed a retransmit on

the 'lost' packet.

With the Tl machine modified to skip a packet, connections in all three modes were

made. This modification enabled the retransmit transitions to be tested in Tl and confirmed

the receiver's ability to notify the transmitter about 'lost' packets.

5. Duplicate Packet Test

In order to test the receiver's ability to recognize and handle duplicate data packets,

Tl was modified to send one packet twice. This test run enabled the testing of the

transitions buffer!a and buffer2a in machine Rl which correspond to finding duplicate

packets.

To test the T2's duplicate packet transition, discard], it was necessary to

temporarily modify R3 to have it send another connection ack packet. The transition

discard.2, in T2, was tested by having R3 send the same data ack packet twice.

6. Testing Timeout

R3 will only execute a timeout!, disc and confirm if transmitter control packets are

not received for a relatively long time. To make this happen required making a temporary

modification to T3 to preclude it from sending T_state packets and to cause it to sleep

periodically for a few seconds. These changes to T3 caused R3 to execute all three of these

transitions after performing 14 timeouts, in fact, R3 executed every transition except finish

under this test condition.

34

7. Silent Receiver Test

To test how the transmitter would respond if the receiver failed to answer a

connection request, the transmitter was started without starting the receiver. This condition

was exercised for all three modes, causing the transmitter to attempt connection three times

before aborting. This test case exercised the clock, ok, timeout, quit and retry turnstones in

T2 and the fail and disc transition in T4.

D. GENERAL CONCEPTS

In addition to verifying individual transitions, the order in which they occur must

be examined. We must ensure no states are skipped, that is, the end state of one transition

must be the start state for the next transition. We also must insure all machines return to the

start state, state 0, upon connection completion.

We may think of every pair of states connected by a transition to be a test case. By

splitting the conditional predicates, in those transitions which have them, and creating new

transitions with explicit predicates, we derive a complete set of acceptable, within

specification, behavior. Verifying that every possible transition for a given machine is

made according to specification, along with ensuring no unspecified transitions occur and

determining the machine ends at state 0, constitutes a certification for the implementation

of that machine.

E. THE TRANSMITTERS

The transmitters were tested initially, as described above, by transmitting a small

file in each of the three modes. After analyzing the results, assorted special test cases were

performed to test those transitions not covered by the 'normal' tests.

The normal machine configuration results are listed under the ModeO, Model, and

Mode2 columns. Machines Tl and T3 were fully exercised by the standard tests. Machines

T2 and T4 required the additional special tests in order to exercise all their transitions.

These results are grouped together under the Special column and referenced by with respect

to which one was used to produce what results.

35

The results are listed as either passed, failed, or N/T for not taken. Passed indicates

the machine executed the transition according to the requirements of the specification.

Failed indicates some aspect of the transition was not accomplished as required. Each

failure is discussed with respect to why it occurred and what effect, if any, it had on the

performance and/or service.

1. Machine Tl

The Tl machine executed all tested transitions according to the design

specifications, see Table 3. The machine demonstrated successfully the full cycle of state

transitions ending back in the start state as required without making any unspecified

transitions. The transition retransmit! was not tested due to an inability to have the machine

reach a point where the retrans count exceeded the block size. Retransmission of packets

was performed using the retransmit! transition in mode 2, and did not require any special

test runs.

Se Si Transition ModeO Mode 1 Mode 2

0 1 start passed passed passed

1 retransmit 1 N/T N/T N/T

1 retransmit N/T N/T passed

1 transmit_blkl passed N/T N/T

1 transmit_blk2 N/T passed N/T

1 transmit_blk3 N/T NAT passed

2 blk_completed N/T passed N/T

2 3 fiow_chkl N/T passed N/T

2 3 flow_chk2 N/T N/T passed

2 1 no_flow passed N/T N/T

3 1 no_err N/T passed N/T

Table 3: Tl Test Results

36

Se Si Transition ModeO Mode 1 Mode 2

3 1 err_chk N/T N/T passed

1 0 finish passed passed passed

Table 3: Tl Test Results

2. Machine T2

T2 failed to meet the specification for five transitions: nojlow, err_chk, no err,

discard!, and discard!, see Table 4. The failures in each were the result of failing to

dequeue a packet as an action. An examination of the implementation revealed that the

dequeuing of packets was actually performed in the rcv_state transition, which leads to

each of the others. This action was actually more efficient since it had to be done in each

of the subsequent transitions regardless of which one was finally taken and did not

adversely affect the machine's ability to provide the user service.

In all test cases, T2 correctly returned to the starting state at the termination of the

connection.

The special case tests included the Connection Interruption Test (see page 33)1, the

Refused Connection Test (see page 33)2, the Duplicate Packet Test (see page 34)3, and the

Silent Receiver Test (see page 35)4.

Si Se Transition ModeO Model Mode2 Special

0 1 request passed passed passed passed1,2'3,4

1 2 accept passed passed passed passed1,3

1 0 unaccept N/T N/T N/T passed2

1 6 clock N/T N/T N/T passed4

6 1 ok N/T N/T N/T passed4

6 7 timeout N/T N/T N/T passed4

Table 4: T2 Test Results

37

Si Se Transition ModeO Model Mode2 Special

7 1 retry N/T N/T N/r passed4

7 0 quit N/T N/T N/T passed4

2 0 finish 1 N/T passed N/r passed3

2 0 finish2 passed N/T N/T N/T
2 0 finish3 N/T N/T passed N/T
2 0 abort N/T N/T N/T passed1

2 3 rcv_state N/T N/T passed passed1'3

3 2 discard 1 N/T N/T N/T failed3

3 2 discard2 N/T N/T N/T failed3

3 4 update passed N/T passed passed1'3

4 2 no_flow failed N/T N/T failed1'3

4 5 flow_chkl N/T failed N/r failed1-3

4 5 flow_chk2 N/T N/T passed passed1'3

5 2 no_err N/T N/T N/T failed
5 2 err_chk N/T failed failed failed

3. Machine T3

Table 4: T2 Test Results

Machine T3 performed all transitions in accordance with the design specification

and demonstrated correct behavior with respect to executing no unspecified transitions and

returning to the start state at the end of the connection, see Table 5. None of the special test

conditions were needed to exercise all the specified transitions.

Si Se Transition ModeO Model Mode2

0 1 start passed passed passed

Table 5: T3 Test Results

38

Si Se Transition ModeO Model Mode2

1 2 clock passed passed passed

2 3 no_data passed passed passed

3 1 delay passed passed passed

3 4 timeout 1 N/T NT passed

3 4 timeout2 passed passed passed

2 4 data passed passed passed

4 1 no_disc passed passed N/T

4 5 disc N/T N/T passed

5 0 confirm N/T N/T passed

1 0 finish passed passed NT

Table 5: T3 Test Results

4. Machine T4

Machine T4 executed all transitions according to specification, see Table 6, with

one minor discrepancy noted below. At the end of each connection, the machine correctly

returned to the start state.

A condition arose during the transmission of a large file which indicated the

possible need for an additional transition definition. While the out buffer has room, the

machine writes packets into it, the write transition in state 2. If the out buffer is full, the

machine loops in state 2 waiting for room to open up. This out buffer full condition caused

an apparent failure in the write transition a few times during the transmission of a large file

when, in fact, an undefined transition was occurring. Adding a wait_buf transition from

state 2 to state 2 would account for this situation and would better define the protocol.

39

The special tests included the Connection Interruption Test (see page 33)\ the

Refused Connection Test (see page 33)2, and the Silent Receiver Test (see page 35)3.

Si Se Transition ModeO Model Mode2 Special

0 1 signal passed passed passed passed2'3

1 0 fail N/T N/T N/T passed3

1 0 unaccept N/T N/T N/T passed2

1 2 start passed passed passed passed2'3

2 2 write passed passed passed N/T
2 3 finish passed passed passed N/T
3 0 confirm N/T passed passed N/T
2 0 disc N/T N/T N/T passed1

Table 6: T4 Test Results

F. RECEIVERS

The receivers were tested in much the same way as the transmitters. The first set of

tests involved sending a small file in each of the three modes.

As with the transmitters, the normal machine configuration results are listed under

the ModeO, Model, and Mode2 columns. All machines required some additional special

test connections in order to exercise all their transitions. These results are grouped together

under the Special column and referenced by with respect to which one was used to produce

what results.

The results are listed as either passed, failed, N/A for not applicable, or N/7 for not

taken.

1. Machine Rl

The Rl machine made no unspecified transitions and correctly returned to the start

state upon completion of each connection but failed all but the start and receive transitions.

40

The no_buf, bufferla, bufferlb, buffer2a, and buffer2b transitions all failed to meet the

action requirement of dequeuing a packet. The dequeuing of packets was performed as an

action in the receive transition which proceeds all five listed failures. This change is

actually a more efficient way to perform the dequeuing of packets and does not adversely

affect the ability of the receiver to provide service to the user.

In all tests, the machine performed the finish transition while the INBUF still

contained packets, see Table 7. As noted in [12], this was an error in the specification. Since

Rl has the duty of servicing the T_chan, it makes more sense to enable the finish transition

when the T_chan is empty and R_active is false, which is exactly what was done in the

implementation. Although the transition was reported as a failure, due to a predicate

mismatch, the machine did return to state 0 from state 1 as required.

The special test performed specifically to check bufferlb and bufferlb was the

Duplicate Packet Test (see page 34).

Si Se Transition ModeO Model Mode2 Special

0 1 start passed passed passed passed

1 0 finish failed failed failed failed

1 2 receive passed passed passed N/T

2 no_buf N/T failed N/T N/T

2 bufferla failed N/T N/T failed

2 bufferlb N/T N/T N/T failed

2 buffer2a N/T N/T failed failed

2 buffer2b N/T N/T N/T failed

Table 7: Rl Test Results

41

2. Machine R2

Analysis of the R2 trace data confirmed the machine made no unspecified

transitions and finished in the start state as required. Transitions made which did not follow

the specification are noted as are some which did not occur at all.

Discard3 was not actually implemented in the code. The author Wan, [12], treated

T_state packets, as well as Conn_disc packets, as out-of-band and thus they were never

queued in the T_chan and did not need to be dequeued. This implementation change was

correctly identified by the testing process when the failure to correctly execute discard3

was discovered, see Table 8.

Start! and update were both dependant on having a Tjtate packet in the T chan

which did not occur for the same reason: it is out-of-band. Since T_chan never contains a

T_state packet, start2 never appears to occur.

By examining the actions taken when the verification program reported the update

transition failed the predicate condition, it was discovered that the correct action of setting

high to equal the T_chan(front).seq was actually accomplished. We may consider this a

success as far as performing the actions are concerned and conclude proper operation was

maintained.

The Tjtate data was still read and used and the machine appeared to operate as

required although it did deviate from the given design specification.

The special test performed to check buffer lb and bufferlb was the Duplicate Packet

Test (see page 34)

Si Se Transition ModeO Model Mode2 Special

0 1 ack passed passed passed passed

1 3 clock N/T N/T N/T passed

3 1 ok N/T passed N/T passed

Table 8: R2 Test Results

42

Si Se Transition ModeO Model Mode2 Special

3 0 timeout N/T N/T N/T passed

1 2 start1 passed passed passed passed

1 2 start2 N/T N/T N/T N/T

1 2 start3 N/T N/T N/T passed

2 0 finishl passed N/T N/T passed

2 0 finish2 N/T passed passed passed

2 2 update N/T N/T N/T failed

2 2 discard 1 N/T N/T N/T passed

2 2 discard2 N/T N/T N/T passed

2 2 discard3 failed N/T failed passed

1 1 lost_ack N/T N/T NA1 passed

Table 8: R2 Test Results

3. Machine R3

All transitions in machine R3 were performed in accordance with the specification,

no unspecified transitions were made, and all connections were terminated with the

machine back in the start state, see Table 9. The conditions of the special test are detailed

in Testing Timeout (see page 34).

Si Se Transition ModeO Model Mode2 Special

0 1 start passed passed passed passed

1 2 clock passed passed passed passed

2 3 no_data N/T sassed passed passed

3 1 delay N/T passed passed passed

3 4 timeout 1 N/T] jassed passed passed

Table 9: R3 Test Results

43

Si Se Transition ModeO Model Mode2 Special

3 4 timeout2 N/T N/r N/T passed
2 4 data passed passed passed passed
4 1 no_disc passed passed passed passed
4 5 disc N/T N/T NT passed
5 0 confirm N/T N/T N^ passed
1 0 finish passed passed passed N/T

Table 9: R3 Test Results

4. Machine R4

Machine R4 does not operate in mode 0. All transitions in machine R4 were made

in compliance with the specification, see Table 10, and the machine returned to the start

state at the end of each connection having taken only specified transitions. The wait

transition was not tested due to an inability to satisfy the predicate conditions. Regardless

of the modifications to the various machines, the wait condition was never satisfied.

The special test performed to check disc was the Lost Packet Test (see page 34).

Si Se Transition ModeO Mode 1 Mode 2 Special
0 1 start N/A passed passed passed
1 0 finish N/A N/T passed NfT
1 0 disc N/A N/T N/T passed
1 2 accept1 N/A passed N/T N/T
1 2 accept2 N/A N/T passed passed
2 3 no_err N/A N/T N/T passed
3 1 wait N/A N/T N/T N/T
3 1 retrieve N/A

passed N/T N/T

Table 10: R4 Test Results

44

Si Se Transition ModeO Mode 1 Mode 2 Special

2 1 err_chk N/A N/T passed passed

Table 10: R4 Test Results

G. FINAL OBSERVATIONS

With the exception of the two failures of the transmitter to find the running receiver,

the implementation appeared to perform quite well. The only comment about the protocol

in general which bears mentioning concerns the parallel execution design. There is no

question that parallel processing affords a great potential for reducing packet processing

overhead with respect to time. Without a multiple processor hardware configuration

however, this advantage is not only lost, but overhead is added due to the requirement for

context switching. And of course, there is the non deterministic processor scheduling

problem as well. Final conclusions and topics for further research follow in the next

chapter.

45

46

V. CONCLUSIONS AND TOPICS FOR FUTURE RESEARCH

A. IMPLEMENTATION CONFORMANCE VERIFICATION

The goal of this work was to take a formal specification and an actual

implementation and perform an examination to determine the implementation's

compliance with the specification. The formal specification was presented, the methods for

producing the set of test sequences from the specification and for generating an

implementation run time trace file were presented, and the methodology for performing the

comparison tests was explained. Finally, the results of the tests were presented along with

the findings.

1. Testing Methods and Problems

a. Errors

Ideally, the testing of software should be as uninvasive as possible.

Modification of the original source code opens the tester up for a multitude of potential

problems due to the possible introduction of errors.

How does a tester distinguish the source of apparent errors? Is the error due

to the original implementation, the modifications made to allow for the test, or perhaps an

interaction between the two? These very problems arose during this research. The code

inserted to write out the state variables incorrectly reported some values in come cases. A

careful analysis of the added code was required to identify the apparent failure of the

implementation as a misreported state variable value.

b. Comparisons

The problem of performing comparisons lies in matching the requirements

variables to the implementation output variables. The approach taken in this work was to

match the two sets of data positionally, that is, in the actual order they are found in the two

data files.

47

Another possible approach would be to match the variable names. This

would require the tester to insure exact variable name matches. This complicates the

comparison process, requiring the comparison program to perform the additional task of

processing the entire list of requirements variable names for each test variable in every line

of output.

c. Complete Testing

The goal of any test is to verify every possible case. Two transitions out of

a total of 96 were not tested due to an inability to cause the target machines to make them.

A number of transitions only occur when an error is encountered, either due to a lost or

unexpected packet or due to a connection failure. Simulating these cases required

modifying some of the machines to either purposely produce bad packets or to loose

packets entirely. Additionally, manually interrupting the execution of a set of machines

during an actual connection was done to simulate a connection failure.

B. CONCLUSIONS

The implementations varied slightly from the formal specification. An examination

of the modifications made indicates the variations do not alter the intended behavior of the

machines from an outside or blackbox perspective.

Formal specifications rarely anticipate all possible actual implementation

situations. Methods for optimizing performance and providing for unanticipated situations

may require that the formal specification be amended. The software development cycle

almost always requires the modification of specifications. The variations from the given

specification identified in this implementation examination represent just such a situation.

48

C. TOPICS FOR FOLLOW ON WORK

1. A Formal Approach to Implementing a Formal Specification

Given a formal specification in the form of SCM, a formal approach to generating

the implementation should be used. The specification describes the protocol's behavior

using a FSM. A structured approach to writing the implementation using case statements

corresponding to the given FSM states would greatly enhance the readability and

understandability of the code and make it much easier to test. Additionally, the variable

names given in the specification should match exactly.

The implementation would consist of a set of blocks. Each state, represented as a

case, would contain conditional statements corresponding to each possible transition from

that state. The conditions for executing a transition would be taken directly from the

specification's predicate requirements. The body of these transition statements would then

contain the actions required by the specification followed by an update of the case variable

to reflect the next state to be entered.

The test bench program, proposed above, would be able to trace the state transitions

by monitoring the value of the case state variable. A change in the value would be a cue to

sample the machine's state variables and write them to the trace file along with the data on

the initial state and end state for the transition.

The implementations examined here were, to some degree, designed in this fashion.

With minor modifications, the existing code could be modified to follow the proposed

style.

2. Examining an Implementation Unintrusively

To externally manipulate and examine an implementation would be preferable.

Having a test bench on which to perform the test runs would be ideal. A master program to

act as a wrapper through which all machine input and output would have to pass would

facilitate both the development and the testing processes. This master program would also

be the place to embed the test run output generation program.

49

Examining and recording the values of internal state variables during a program's

execution from the outside would eliminate the problem of introducing errors into the

implementation. Additionally, it would allow the tester more freedom to examine different

variations of the implementation. The method of modifying the code of the implementation

requires a great deal of time on the part of the tester to read and understand the code being

tested as well as to find the appropriate places to insert the test code to write out the

machine's state and variable values.

50

APPENDIX. RESULTS ANALYSIS GENERATING PROGRAM

A. SNRTEST.A

with text_io, Test_Snr;
use texMo, Test_Snr;

procedure SNRTest is

package integerjnout is new integer_io(integer);
use integerjnout;

subtype name is string(1..2);

myfiles
instring
instringjen
Number_to_test
indx
snames

begin

: array(0..9) of file_name_record_type;
:string(1..30):= (others =>");
: integer:=1;
: integer := 1;
: integer := 1;

: array(0..7) of name;

text_io.put_line("What machines are we testing?");
text_io.get_line(instring, instringjen);

for I in 0..7 loop
for II in 1..2 loop

names(l)(ll) := instring(lndx);
indx := indx + 1;

end loop;
indx := indx + 1;
exit when instring(indx) = '';
Number_to_test := Numberjojest + 1;

end loop;

for J in O..Number_to_test-1 loop
for I in 1..2 loop

myfiles(J).File1(l)
myfiles(J).File2(l)
myfiles(J).File3(l)

end loop;
end loop;

= names(J)(l)
= names(J)(l)
= names(J)(l)

text_io.put_line("What subdirectory contains the test output?");
text_io.get_Jine(instring, instringjen);

for J in O..NumberJoJest loop
for I in 1 ..instringjen loop

exit when instring(l) = ' ';

51

myfiles(J).path(l) := instring(l);
end loop;

end loop;

for I in O..Number_to_test-1 loop
tgparse(myfiles(i));

end loop;

end SNRTest;

B. TESTPACK.A

-- Thesis: Testing the SNR Transport Protocol

- Captain Bob Grier

-- Package Specification and Body for Test_Snr'

- Purpose: Automated comparison of protocol specification and test run
results.

-- Description: The package takes a record containing the names of
specification file: *res.txt, the test output file : *.out
and the name of the file to write the results of the
comparison to: "test.rst.

The specification is read and each unique transition is saved
into a data structure containing the start and end states as well
as the predicate and action values required.

The test output file is then read one line at a time. The start
and end states are compared against the saved specification records
until a match is found. The predicates are first checked to see if
they match, a failure to match generates an error message indicating
the predicates were not able to be matched and lists all transitions
which start and end the same as the test transition. The user can
check which predicate fields are not correct by comparing the actual
list of predicates with the expected predicates.

Next, the actions are checked. A failure to match all the actions
results in an error message listing which action failed to match as
well as what was found and what was expected. The test data and the
transition are listed to allow for further comparison.

Matches are listed showing the start and end states and the name
of the transition taken.

with textJO;
use textJO;

package Test_Snr is

52

type file_name_record_type is record
Filel :string(1..13) := " res.txt ";
File2 :string(1„13) := " .out ";
File3 : string(1..13) := " test.rst ";
Path : string(1..30) := (others =>'');

end record;

procedure tgparse (myjiles: in file_name_record_type);

end Test_Snr;

package body Test_Snr is

procedure tgparse(my_files: in fiie_name_record_type) is

test_state_number: constant integer := 35;

subtype result is string(1..15);
type the_results is array(1..35) of result;

type testgen_record_type is record
Si : integer := -1
Se : integer := -1
T_name :string(1..15)
values : the_results;
times_taken : integer := 0;

end record;

test_states

temp,
names

ajine
snipit
t_name
This_char
full_in_name,
full_out_name

a_line_len
dummy
how_many,
Si,
sm_index,
Se,
indx,
ti,
ri,
bar_count
predicate_count

: array(1..Test_state_number) of testgen_record_type;

: the_results := (others =>(others=>''));

: string(1..300) := (others => '');
:string(1..10):= (others =>");
:string(1..15);
: character;

:string(1..50) := (others =;

: natural;
: positive;

: integer := 1;
: integer := -2;

53

a_states_match : array(1 ..6) of integer;

predicate : Boolean := True;

-- FILES
testgenjile,
outjile,
TEST_Ofile : Filejype;

package integeMnout is new integerjo(integer);
use integeMnout;

-- FUNCTION: LENGTH - finds the length of a string

function length(mystring: in string) return integer is
len : integer:=0;

begin
for I in 1..100 loop

exit when mystring(i) = '';
len := len + 1;

end loop;
return len;

end length;

- PROCEDURE: OPEN_THE_FILE - opens the input Wes

PTuC
c
ednTc

0PEN-THE-FILE(FILE : in out F"-E_TYPE; File name: in string) is
THE_FILE ; FILE_TYPE;
FILE_NAME_LENGTH : INTEGER :=0;

begin

FILE_NAME_LENGTH := length(File_name)-

S,N!F;!lrE'M0DE=>IN-FILE'NAME=>F^E-NAME(1--FII-E NAME LENGTH))- NEW_LINE; ~ ~ "'

end OPEN_THE_FILE;

- PROCEDURE: OPEN_OUT_FILE - opens the output file

procedure OPEN_OUT_FILE(FILE : in out FILE_TYPE; File name: in string) is
THE_FILE : FILE_TYPE"
FILE_NAME_LENGTH : INTEGER :=0;

begin

54

FILE_NAME_LENGTH := length(File_name);
create(FILE, NAME=>FILE_NAME(1 ..FILE_NAME_LENGTH));
NEW_LINE;

end OPEN_out_FILE;

- PROCEDURE: print_names - writes out the predicate and action names

procedure print_names is

begin
for II in 3..how_many+2 loop

put(out_file,names(ll)(1..10));
put(out_file,T);

end loop;
new_line(out_file);

end print_names;

-- PROCEDURE: printjransition - prints out the given transition

procedure printjransition (Transition: in out integer) is

begin
for II in 1..how_many loop

put(out_file,test_states(Transition).values(ll)(1..10));
put(out_file,"|");

end loop; ,
new_line(out_file);

end print_transition;

-- PROCEDURE: Report_Match -- prints out the match condition

procedure Report_Match(Transition: in integer) is

begin

test_states(Transition).times_taken := test_states(Transition).times_taken + 1;
put(out_file,"match Si:");
put(out_file,Si,2);
put(out_file,"Se:");
put(out_file,Se,2);
put(out_file," Transition:");
put(out_file,test_states(Transition).T_name);
new_line(out_file);

55

end Report_Match;

-- PROCEDURE: Report_error - reports falure to match any transitions

procedure Report_error is - this is the no predicate match case

begin

new_Line(out_file);
put(out_file,"ERROR-Predicate failed to match transition from Si:");
put(out_file,test_states(a_states_match(1)).Si,2);
put(out_file,"toSe:");
put(out_file,test_states(a_states_match(1)).Se,2);
newjine(outjile);
print_names;

for II in 2..how_many+1 loop
put(out_file,temp(ll)(1 ..10));
put(out_file,T);

end loop;
new_line(out_file);
put(out_file,"Should have matched:");
new_line(out_file);
for II in 1..6 loop

exit when a_states_match(ll) = -1;
print_transition(a_states_match(ll));

end loop;
new_Line(out_file);

end report_error;

-- PROCEDURE: Report_error - reports falure to match actions when predicate
is matched

procedure Report_error (Transition: in integer;
Predicate: in integer) is

trans_out : integer := Transition;

begin
new_line(out_file);
put(out_file,"ERROR-Transition ->");
put(out_file,test_states(Transition).T_name);
put(out_file,"ACTION ->");
put(out_file,names(Predicate+2)(1 ..10));
putfoutjile/failed to match.");

56

put(out_file," Found: ");
put(out_file,temp(Predicate+1));
put(out_file," Expected:");
put(out_file,test_states(Transition).values(Predicate));

new_line(out_file);
print_names;
for II in 2..how_many+1 loop

put(out_file,temp(ll)(1..10));
put(out_file,T);

end loop;
new_line(out_file);
print_transition(trans_out);
new_line(out_file);

end report_error;

- FUNCTION: Match„predicates - attempts to match the predicates

function Match_predicates(Transition: integer) return boolean is

DC1 : result := "DC ";

begin

for K in 1 ..predicate_count loop
if test_states(Transition).values(k) /= DC1 then

if test_states(Transition).values(k) /= temp(k+1) then
return False;

end if; - end of the predicate/action missmatch condition
end if; -- end of the check all non-don't care values

end loop; -- end of "check all predicates and actions" loop
return True;

end Match „predicates;

- FUNCTION: Match_actions - attempts to match the actions

function Match_actions(Transition: integer) return boolean is

DC2 : result :="- ";
outjrans : integer := Transition;

begin

for K in predicate_count+1 ..how_many loop
if test_states(Transition).values(k) /= DC2 then

if test_states(Transition).values(k) /= temp(k+1) then

57

Report_error(out_trans,k);
return False;

end if; - end of the predicate/action missmatch condition
end if; - end of the check all non-don't care values

end loop; -- end of "check all predicates and actions" loop
return True;

end Match_actions;

-- Main body

begin
open_the_file(testgen_file, my_files.file1);

get(testgen_file, this_char);

while This_char /= '-' loop - skip forward to data lines
get(testgen_file, this_char);
skipjine(testgenjile);

end loop;

get_line(testgenjile, ajine, ajinejen);

ti:=1;
ri := 1 ;

for I in 1 ..ajinejen loop - find the predicates and actions
if ajine(i) /= '' and ajine(i) /= T and ajine(i) /= - then
names(ti)(ri) := ajine(i);
ri := ri + 1;

elsif ajine(i) = '|' and ajine(i-l) /= «*• then -- ignore the |**|
if predicate then

predicate_count := predicate_count + 1;
end if;
ri:=1;
ti := ti + 1;

end if;
if ajine(i) = '*' then
predicate := false;

end if;
end loop;

put("prediate count is:"); put(predicate_count, 3); newjine;
skipjine(testgenjile);

While not End_ofJile(testgenJile) loop

getjine(testgenjile, ajine, ajinejen);

- FIRST GET THE STATE NUMBERS -

58

indx := 1;
T_name:= (others =>'');

while ajine(indx) /= '|' loop -- read until the first bar '|'
t_name(indx) := ajine(indx); - Si is after this bar
indx := indx + 1;

end loop;

for I in 1..10 loop - put the next 10 characters into snipit
snipit(i) :=a_line(indx+i);

end loop;
integer_inout.get(snipit, Si, dummy); - read the start state as an integer

for I in 1 ..3 loop - pick the end state off the end
if a_line(i+a_line_len-3) = '|' then

snipit(i) :='';
else

snipit(i) := a_line(i+a_line_len-3);
end if;

end loop;

integer_inout.get(snipit, Se, dummy); - read the end state as an integer

- reset values

ti := 1;
ri := 1;
bar_count := 0;
temp := (others =>(others => ''));

for I in 1 ..ajinejen loop - find the predicates and actions
if a_line(i) /= '' and a_line(i) /= T and a_line(i) /= '*' then
temp(ti)(ri) := a_line(i);
ri := ri + 1;

elsif a_line(i) = '|' and a_line(i-1) /= '*' then -- ignore the |**|
ri := 1;
ti := ti + 1;

end if;

if a_line(i) = T then
bar_count := bar_count + 1 ;

end if;

end loop;

- attempt to insert into the Test_state array
- bar count minus 4 is the actual number of predicates and actions

how_many := bar_count - 4;

59

for I in 1 ..Test_State_number loop -- insert new data loop
if test_states(i).T_name = T_name then -- check for repeats
exit;

elsif test_states(i).Si = -1 then -- if we haven't seen this one...
test_states(i).T_name := t_name; - add this one onto the list
for j in 1 ..how_many loop -- add the states
test_states(i).values(j) := temp(j+2); -- don't want the first two fields

end loop;
test_states(i).Si := Si; -- add the Si info
test_states(i).Se := Se; - add the Se info
exit;

end if;
end loop; - insert new data loop

end loop; - end of reading the testgen file

-- read and check the test output against the testgen stuff

indx := 1; - add the path if any
for I in 1..30 loop

exit when myJiles.Path(l) = '';
full_in_name(indx) := myjiles.path(l);
full_out_name(indx) := myjiles.path(l);
indx := indx + 1;

end loop;

for I in 1 ..13 loop
full_in_name(indx) := my_files.file2(l);
full_out_name(indx) := my_files.file3(l);
indx := indx + 1;

end loop;

open_the_file(test_ofile, full_in_name); —my_files.file2
open_out_file(out_file, full_out_name); -- my_files.file3
skip_line(test_ofile);

put(out_file,*THE MODE IS");
put(out_file,my_files.Path(2));
new_line(out_file,2);
while not End_of_file(test_ofile) loop
get_line(test_ofile, ajine, ajinejen);

integer_inout.get(a_line, Si, dummy); -- get Si

for I in 1..3 loop
if a_line(i+a_line_len-3) = '|' then
snipit(i) := '';

else
snipit(i) := a_line(i+a_lineJen-3);

60

end if;
end loop;

integer_inout.get(snipit, Se, dummy); -- get Se

ti:=1;
ri:=1;
bar_count := 0;
temp := (others=>(others=>''));

for I in 1 ..ajinejen loop - find the predicates and actions
if a_line(i) /= '' and then

a_line(i) /= '|' and then
a_line(i) /= '*' then

temp(ti)(ri) := a_line(i);
ri := ri + 1;

els'rf a_line(i) = '[and then a_line(i-1) /= '*' then
ri:=1;
ti:=ti + 1;

end if;

if a_line(i) = T then
bar_count := bar_count + 1;

end if;

end loop; - end of parsing this line

- the loading of the test stuff goes here A*************************

sm_index := 1;
a_states_match := (others=> -1);

for I in 1..Test_State_number loop

if test_states(i).Si = -1 then
Report_Error;
exit;

end if;

if test_states(i).Si = Si and then test_states(i).Se = Se then
a_states_match(sm_index):= I;
sm_index := sm_index +1;
if Match_predicates(l) then

if Match_actions(l) then
Report_match(l);
exit;

else
exit;

end if;
end if:

61

end if;

end loop; - end of the "check all the test states" loop

end loop; - read the test output file

-- echo out the specifiations
newjine(outjile);
put(out_file,"# Taken Si Se Name ");
for II in 3..how_many+2 loop

put(out_file,names(ll)(1 ..10)); put(out_file,"|");
end loop;
newjine(outjile);

for I in 1..Test_State_numberloop
exit when test_states(i).Si = -1;
put(out_file,l,2);
put(out_file,test_states(i).times_taken, 4);
put(out_file,test_states(i).Si, 4);
put(out_file,test_states(i).Se, 4);
put(out_file," ");

put(out_file,test_states(i).T_name(1..14));
for j in 1 ..how_many loop

put(out_file,test_states(i).values(j)(1..10))-
put(out_file,"|");

end loop;
newjine(outjile);

end loop;

endtgparse;

end Test Snr;

62

LIST OF REFERENCES

[1] Netravali, A., Roome, W., and Sabnani, K., "Design and Implementation of a High Speed
Transport Protocol," IEEE Transactions in Communications, vol.38, #11, Nov 1990.

[2] Lundy, G.M., McArthur, R.C., "Formal Modal of a High Speed Transport Protocol,"
Protocol Specification, Testing and Verification XII, North-Holland, 1992.

[3] Brinksma, E., "A tutorial on LOTOS," Proc IFIP WG 6.1 5th Int Workshop on Protocol
Specification, Testing and Verification, Toulouse-Moissac, France, June 10-13,1985.

[4] Castenet, R., Dupuex, A., Guitton, P., "Ada, a Well-suited Language for the Specification
and Implementation of Protocols," Proc IFIP WG 6.1 5th Int Workshop on Protocol
Specification, Testing and Verification, Toulouse-Moissac, France, June 10-13,1985.

[5] Budkowsky, S., Dembinsky, P., "The Formal Specification Technique Estelle," Computer
Networks and ISDN Syst Vol. 14, 1987.

[6] Diaz, M., Ansart, J.P., Courtiat, J., Azema, P., Chari, V, The Formal Description Technique
Estelle, North-Holland Elvisier, 1989.

[7] Linn, R.J., "The Features and Facilities of Estelle: a Formal Description Technique Based
upon an Extended Finite State Machine Model," Proc IF7P WG 6.1 5th Int Workshop on
Protocol Specification, Testing and Verification, Toulouse-Moissac, France, June 10-13
1985.

[8] Holzmann, G. J., Design and Validation of Computer Protocols, Prentice Hall Software
Series, 1991.

[9] Lundy, G.M., Miller, R.E., "Specification and Analysis of a Data Transfer Protocol Using
Systems of Communicating Machines," Distributed Computing, December 1991.

[10] Tipici, H.A., "Specification and Analysis of a High Speed Transport Protocol," M.S.
Thesis, Naval Postgraduate School, Monterey, CA., 1993.

[11] Lundy, G. M., Basaran, C, "Automated Generation of Protocol Test Sequences From
Formal Specifications," February 1994.

[12] Wan, W J., "Implementation of the SNR High-Speed Transport Protocol (the Receiver
Part)," MS Thesis, Naval Postgraduate School, Monterey, CA., March 1995.

[13] Mezhoud, F., "Implementation of the SNR High-Speed Transport Protocol (the Transmitter
Part)," MS Thesis, Naval Postgraduate School, Monterey, CA., March 1995.

[14] Miller, R.E., Lundy, G.M., 'Testing Protocol Implementations Based on a Formal
Specification," Protocol Test Systems III, North-Holland, 1990.

63

64

INITIAL DISTRIBUTION LIST

Defense Technical Information Center.
Cameron Station
Alexandria, VA 22304-6145

Dudley Knox Library
Code 052
Naval Postgraduate School
Monterey, CA 93943- 5101

Chairman, Code CS
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943

Dr G. M. Lundy, Code CS/Lu...
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943

Dr Shridhar B. Shukla, Code, EC/Sh.
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943

CPT Robert B. Grier, Jr.
904 Tomahawk Trail
Kerrville, TX 78028

65

